Sains Malaysiana 53(7)(2024): 1559-1574

http://doi.org/10.17576/jsm-2024-5307-07

 

Antarctic Spore-Forming Microorganisms from Deception Island Inhibit the Growth of Various Bacterial Strains

(Mikroorganisma Pembentuk Spora Antartika dari Pulau Deception Merencat Pertumbuhan Pelbagai Strain Bakteria)

 

SHEAU TING, YONG1, CHUI PENG-TEOH1, PARIS LEONARDO LAVIN2, MARCELO A. GONZÁLEZ3 & CLEMENTE MICHAEL VUI LING WONG1,*

 

1Biotechnology Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

2Departamento de Biotecnologia, Facultad de Ciencias del Mar y Recursos Biologicos, Universidad de Antofagasta, 601 Avenida Angamos, Antofagasta 1270300, Chile

3Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, Chile

 

Received: 17 April 2023/Accepted: 31 May 2024

 

Abstract

Antarctic microbes have evolved and adapted unique strategies to survive in the harsh polar environment. Apart from the ability to adapt to the low nutrient soil content and extremely dry and cold polar environment, a particular strategy used by Antarctic bacteria is the production of antimicrobial compounds that can eliminate rivals in the same niche, giving them a competitive edge over other microbes. In contrast, it is unclear whether spore-forming microbes possess similar antimicrobial properties as one of their survival strategies, especially those from the Antarctic volcanic Deception island in the West Antarctic. Hence, this study aims to isolate and characterize the spore-forming microbes in Deception Island, Antarctica, as well as to identify the ones that are equipped with the ability to inhibit other microorganisms. Microbes were isolated using various growth media and were segregated into clusters based on their random amplified polymorphic DNA (RAPD) fingerprints. A total of 90 strains were isolated and clustered into 30 groups at a similarity of 60%. Representative strains from each cluster were assayed for antimicrobial activities against 13 Gram-positive and Gram-negative test bacteria comprising human pathogens. Twenty-five strains exhibited the ability to inhibit at least one test bacterium. The four strains, A60, Im31, Im32 and Im33 that showed the strongest inhibitory activities were subjected to 16S or 18S rDNA sequencing and analysis to identify them. They were identified as Pseudogymnoascus, Bacillus, Leohumicola, and Talaromyces spp. The ability of the aforementioned microbes to thrive in harsh environments and compete with fierce competitors for scarce nutrients is probably due to their ability to produce antimicrobial compounds that target and kill their rivals.

 

Keywords: Bacillus; Leohumicola; maritime Antarctic; Pseudogymnoascus; Talaromyces

 

Abstrak

Mikrob Antartika telah melalui evolusi dan dilengkapi dengan beberapa strategi adaptasi yang unik untuk bertahan hidup dalam persekitaran kutub yang amat mencabar. Selain daripada keupayaan untuk menyesuaikan diri dengan persekitaran kutub yang mempunyai kandungan nutrien tanah yang rendah, persekitaran yang kering dan sejuk melampau, satu strategi yang digunakan oleh bakteria Antartika ialah dengan penghasilan sebatian antimikrob yang boleh menghapuskan saingan dalam nic yang sama, memberikan mereka kelebihan daya saing berbanding mikrob lain. Namun begitu, tidak jelas sama ada mikrob pembentuk spora mempunyai sifat penghasilan antimikrob yang sama sebagai salah satu strategi kemandirian hidup mereka terutamanya di pulau gunung berapi Deception di Antartika Barat. Oleh itu, kajian ini bertujuan untuk memencilkan dan mencirikan mikrob pembentuk spora dari Pulau Deception, Antartika serta mengenal pasti mikrob yang dilengkapi dengan keupayaan untuk merencat mikroorganisma lain. Mikrob telah dipencilkan menggunakan pelbagai media pertumbuhan dan diasingkan ke dalam kelompok berdasarkan cap jari DNA polimorfik yang diamplifikasi secara rawak (RAPD). Sebanyak 90 strain telah diasingkan dan dikelompokkan kepada 30 kumpulan dengan persamaan 60%. Strain perwakilan daripada setiap kluster telah disaring bagi aktiviti antimikrob terhadap 13 patogen Gram-positif dan Gram-negatif. Dua puluh lima strain menunjukkan keupayaan untuk merencat sekurang-kurangnya satu bakteria ujian. Empat strain, A60, Im31, Im32 dan Im33 yang menunjukkan aktiviti perencatan paling ketara telah dikenal pasti identiti mereka melalui proses penjujukan dan analisis rDNA 16S atau 18S mereka. Mereka adalah Pseudogymnoascus, Bacillus, Leohumicola dan Talaromyces spp. Keupayaan mikrob tersebut untuk hidup dengan berjaya dalam persekitaran yang mencabar dan bersaing dengan sengit dengan pencabar untuk mendapatkan nutrien yang terhad mungkin disebabkan oleh sebatian antimikrob yang dihasilkan oleh mereka untuk menyasarkan dan membunuh pesaing mereka.

 

Kata kunci: Bacillus; Leohumicola; maritim Antarctic; Pseudogymnoascus; Talaromyces

 

REFERENCES

Adeoyo, O.R., Pletschke, B.I. & Dames, J.F. 2019. Molecular identification and antibacterial properties of an ericoid-associated mycorrhizal fungus. BMC Microbiology 19(1): 178.

Albores, S., Sanguinedo, P., Held, B.H., Cerdeiras, M.P. & Blanchette, R.A. 2018. Biodiversity and antimicrobial activity of Antarctic fungi from the Fildes Peninsula, King George Island. Sydowia 70: 185-192.

Astudillo-Barraza, D., Oses, R., Henríquez-Castillo, C., Vui Ling Wong, C.M., Pérez-Donoso, J.M., Purcarea, C., Fukumasu, H., Fierro-Vásquez, N., Pérez, P.A. & Lavin, P. 2023. Apoptotic induction in human cancer cell lines by antimicrobial compounds from Antarctic Streptomyces fildesensis (INACH3013). Fermentation 9(2): 129.

Bañón, M., Justel, A., Velázquez, D. & Quesada, A. 2013. Regional weather survey on Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica. Antarctic Science 25(2): 146-156.

Capella-Gutiérrez, S., Silla-Martínez, J.M. & Gabaldón, T. 2009. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15): 972-973.

Carrión, O., Miñana-Galbis, D., Montes, M.J. & Mercadé, E. 2011. Pseudomonas deceptionensis sp. nov., a psychrotolerant bacterium from the Antarctic. International Journal of Systematic and Evolutionary Microbiology 61: 2401-2405.

Casanueva, A., Tuffin, M., Cary, C. & Cowan, D.A. 2010. Molecular adaptations to psychrophily: The impact of ‘omic’ technologies. Trends in Microbiology 18: 374-381.

Cavalcante, S.B., da Silva, A.F., Pradi, L., Lacerda, J.W.F., Tizziani, T., Sandjo, L.P., Modesto, L.R., de Freitas, A.C.O., Steindel, M., Stoco, P.H. & Duarte, R.T.D. 2024. Antarctic fungi produce pigment with antimicrobial and antiparasitic activities. Brazilian Journal of Microbiology 55: 1251-1263.

Chattopadhyay, M. & Jagannadham, M. 2001. Maintenance of membrane fluidity in Antarctic bacteria. Polar Biology 24: 386-388.

Cheah, Y., Lee, L.H., Chieng, C.C.Y. & Wong, C.M.V.L. 2015. Isolation, identification and screening of Actinobacteria in volcanic soil of Deception Island (the Antarctic) for antimicrobial metabolites. Polish Polar Research 36: 67-78.

Cowan, D.A., Makhalanyane, T.P., Dennis, P.G. & Hopkins, D.W. 2014. Microbial ecology and biogeochemistry of continental Antarctic soils. Frontiers in Microbiology https://doi.org/10.3389/fmicb.2014.00154

de Menezes, G.C.A., Amorim, S.S., Gonçalves, V.N., Godinho, V.M., Simões, J.C., Rosa, C.A. & Rosa, L.H. 2019. Diversity, distribution, and ecology of fungi in the seasonal snow of Antarctica. Microorganisms 7(10): 445.

Decho, A.W. 1990. Microbial exopolymer secretions in ocean environments: their role (s) in test webs and marine processes. Oceanography and Marine Biology: An Annual Review 28: 73-153.

Díaz, G.A., Latorre, B.A., Ferrada, E. & Lolas, M. 2019. Identification and characterization of Diplodia mutila, D. seriata, Phacidiopycnis washingtonensisand Phacidium lacerum obtained from apple (Malus x domestica) fruit rot in Maule Region, Chile. European Journal of Plant Pathology 153: 1259-1273.

Dieser, M., Greenwood, M. & Foreman, C.M. 2010. Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arctic, Antarctic, and Alpine Research 42: 396-405.

Dix, N.J. & Webster, J. 1995. Fungi of extreme environments. Fungal Ecology. Dordrecht: Springer. pp. 322-340.

Dong, N., Di, Z., Yu, Y., Yuan, M., Zhang, X. & Li, H. 2013. Extracellular enzyme activity and antimicrobial activity of culturable bacteria isolated from soil of Grove Mountains, East Antarctica. Wei Sheng Wu Xue Bao (Acta Microbiologica Sinica) 53: 1295-1306.

El-Fiky, Z.A., Mansour, S.R., El-Zawhary, Y. & Ismail, S. 2003. DNA-fingerprints and phylogenetic studies of some chitinolytic actinomycete isolates. Biotechnology 2: 131-140.

Furbino, L.E., Godinho, V.M., Santiago, I.F., Pellizari, F.M., Alves, T.M.A., Zani, C.L., Junior, P.A.S., Romanha, A.J., Carvalho, A.G.O., Gil, L.H.V.G., Rosa, C.A., Minnis, A.M. & Rosa, L.H. 2014. Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microbial Ecology 67: 775-787.

Gesheva, V. 2012. Biological potential of soil populations in two Shetland islands, Livingston and Deception. The Cyprus Journal of Sciences 10: 111-118.

Hayakawa, M. & Nonomura, H. 1989. A new method for the intensive isolation of actinomycetes from soil. Actinomycetologica 3: 95-104.

Held, B.W., Arenz, B.E. & Blanchette, R.A. 2011. Factors influencing the deterioration of historic structures at Deception Island, Antarctica. In Polar Settlements - Location, Techniques and Conservation, edited by Barr S. & Chaplin P. Oslo: International Polar Heritage Committee of ICOMOS. pp. 35-43.

Herbold, C.W., Mcdonald, I.R. & Cary, S.C. 2014. Microbial ecology of geothermal habitats in Antarctica. In Antarctic Terrestrial Microbiology, edited by Cowan, D.A. Berlin Heidelberg: Springer. pp. 181-215.

Hong, K., Gao, A.H., Xie, Q.Y., Gao, H.G., Zhuang, L., Lin, H.P., Yu, H.P., Li, J., Yao, X.S., Goodfellow, M. & Ruan, J.S. 2009. Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Marine Drugs 7: 24-44.

Khanna, M., Solanki, R., Lal, R. & Narendra, A. 2011. Selective isolation of rare actinomycetes producing novel antimicrobial compounds. International Journal of Advanced Biotechnology and Research 2: 357-375.

Latter, P.M. & Heal, O.W. 1971. A preliminary study of the growth of fungi and bacteria from temperate and Antarctic soils in relation to temperature. Soil Biology and Biochemistry 3(4): 365-379.

Lezcano, M.Á., Moreno-Paz, M., Carrizo, D., Prieto-Ballesteros, O., Fernández-Martínez, M. Á., Sánchez-García, L., Blanco, Y., Puente-Sánchez, F., de Diego-Castilla, G., García-Villadangos, M. & Fairén, A.G. 2019. Biomarker profiling of microbial mats in the geothermal band of Cerro Caliente, Deception Island (Antarctica): Life at the edge of heat and cold. Astrobiology 19(12): 1490-1504.

Llarch, A., Logan, N.A., Castellví, J., Prieto, M.J. & Guinea, J. 1997. Isolation and characterization of thermophilic Bacillus spp. from geothermal environments on Deception Island, South Shetland Archipelago. Microbial Ecology 34: 58-65.

Lo Giudice, A., Bruni, V. & Michaud, L. 2007. Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms. Journal of Basic Microbiology 47(6): 496-505.

Lo Giudice, A., Brilli, M., Bruni, V., De Domenico, M., Fani, R. & Michaud, L. 2007. Bacterium–bacterium inhibitory interactions among psychrotrophic bacteria isolated from Antarctic seawater (Terra Nova Bay, Ross Sea). FEMS Microbiology Ecology 60(3): 383-396.

Logan, N.A., Lebbe, L., Hoste, B., Goris, J., Forsyth, G., Heyndrickx, M., Murray, B.L., Syme, N., Wynn-Williams, D.D. & De Vos, P. 2000. Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. International Journal of Systematic and Evolutionary Microbiology 50: 1741-1753.

Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Von Haeseler, A. & Lanfear, R. 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37(5): 1530-1534.

Morita, R.Y. 1975. Psychrophilic bacteria. Bacteriological Reviews 39: 144-167.

Netzker, T., Fischer, J., Weber, J., Mattern, D.J., König, C.C., Valiante, V., Schroeckh, V. & Brakhage, A.A. 2015. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Frontiers in Microbiology 6: 299. https://doi.org/10.3389/fmicb.2015.00299

Nicolaus, B., Manca, M.C., Lama, L., Esposito, E. & Gambacorta, A. 2001. Lipid modulation by environmental stresses in two models of extremophiles isolated from Antarctica. Polar Biology 24: 1-8.

Núñez-Montero, K., Lamilla, C., Abanto, M., Maruyama, F., Jorquera, M.A., Santos, A., Martinez-Urtaza, J. & Barrientos, L. 2019. Antarctic Streptomyces fildesensis So13. 3 strain as a promising source for antimicrobials discovery. Scientific Reports 9(1): 7488.

O'Brien, A., Sharp, R., Russell, N.J. & Roller, S. 2004. Antarctic bacteria inhibit the growth of test-borne microorganisms at low temperatures. FEMS Microbiology Ecology 48: 157-167.

Purić, J., Vieira, G., Cavalca, L.B., Sette, L.D., Ferreira, H., Vieira, M.L.C. & Sass, D.C. 2018. Activity of Antarctic fungi extracts against phytopathogenic bacteria. Letters in Applied Microbiology 66(6): 530-536.

Schoch, C.L., Ciufo, S., Domrachev, M., Hotton, C.L., Kannan, S., Khovanskaya, R., Leipe, D., Mcveigh, R., O’Neill, K., Robbertse, B., Sharma, S., Soussov, V., Sullivan, J.P., Sun, L., Turner, S. & Karsch-Mizrachi, I. 2020. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020. https://doi.org/10.1093/database/baaa062

Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A., Chen, W. & Fungal Barcoding Consortium. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences 109(16): 6241-6246. 

Shirling, E.B. & Gottlieb, D. 1966. Methods for characterization of Streptomyces species. International Journal of Systematic Bacteriology 16: 313-340.

Steinke, K., Mohite, O.S., Weber, T. & Kovács, Á.T. 2021. Phylogenetic distribution of secondary metabolites in the Bacillus subtilis species complex. Msystems 6(2): e00057-21.

Stefańska, I., Kwiecień, E., Górzyńska, M., Sałamaszyńska-Guz, A. & Rzewuska, M. 2022. RAPD-PCR-based fingerprinting method as a tool for epidemiological analysis of Trueperella pyogenes infections. Pathogens 11(5): 562.

Svahn, K.S., Chryssanthou, E., Olsen, B., Bohlin, L. & Göransson, U. 2015. Penicillium nalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B. Fungal Biology and Biotechnology 2: 1. https://doi.org/10.1186/s40694-014-0011-x

Tamura, K., Stecher, G. & Kumar, S, 2021. MEGA 11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38: 3022-3027.

Tomova, I., Gladka, G., Tashyrev, A. & Vasileva-Tonkova, E. 2014. Isolation, identification and hydrolytic enzyme production of aerobic heterotrophic bacteria from two Antarctic islands. International Journal of Environmental Sciences 4: 614-625.

Wiseman, M.S., Kim, Y.K., Dugan, F.M., Rogers, J.D. & Xiao, C.L. 2016. A new postharvest fruit rot in apple and pear caused by Phacidium lacerumPlant Disease 100(1): 32-39.

Wong, C.M.V.L., Tam, H.K., Alias, S.A., González, M., Rocha, G.G. & Yévenes, M.D. 2011. Pseudomonas and Pedobacter isolates from King George Island (Antarctica) inhibited the growth of test−borne pathogens. Polish Polar Research 32: 3-14.

Wynn-Williams, D.D. 1996. Antarctic microbial diversity: The basis of polar ecosystem processes. Biodiversity and Conservation 5: 1271-1293.

Yong, S.T., Lavin, P.L., González, M.A. & Wong, C.M.V.L. 2023. A Talaromyces species with strong antimicrobial activity from Deception Island. Sains Malaysiana 52(1): 83-93.

Zheng, L., Yang, K., Liu, J., Sun, M., Zhu, J., Lv, M., Kang, D., Wang, W., Xing, M. & Li, Z. 2016. Screening of microorganisms from Antarctic surface water and cytotoxicity metabolites from Antarctic microorganisms. Test Science and Nutrition 4: 198-206.

 

*Corresponding author, email: michaelw@ums.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next